Abstract

Electric power utilities require forecast of system demand or electrical load for one to seven days ahead. This paper studies a short-term electric load forecasting technique using a multi-layered feedforward artificial neural network (ANN) and a fuzzy set-based classification algorithm. The hourly data is subdivided into various class of weather conditions using the fuzzy set representation of weather variables and then the ANN's are trained and used to perform the load forecasting up to 120 hours ahead with a remarkable accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.