Abstract

In this study, we address the design challenges related to hyperparameters, such as the number of layers and nodes in deep neural networks, by introducing an Improved Genetic Algorithm-based method for optimizing neural network structures (IGA-DNN). We apply this method to the practical problem of β function correction in particle accelerators and develop a storage ring β function correction scheme based on IGA-DNN. We compare our approach with traditional genetic algorithm-optimized neural networks to evaluate its performance. Our results reveal that the neural network optimized by the improved genetic algorithm reduces the number of layers by three and decreases training time by a factor of three, leading to a more efficient model. Moreover, the accuracy of β function simulation correction is enhanced using the IGA-DNN method. This approach can also be extended to optimize other optical parameters and tackle multi-parameter optimization problems, showcasing its versatility and potential for broader applications across various fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.