Abstract

In this work, the neural network state observer-based robust adaptive quantized iterative learning output feedback control (RAQILOFC) is investigated for rigid-flexible coupled robotic systems (RFCRSs) with unknown time delays and actuator faults. To deal with hysteresis quantization and actuator defects, a novel fault-tolerant RAQILOFC is designed first, based only on accessible system output data. Then, using the fault-tolerant RAQILOFC laws in combination with the neural network state observer, the two given angular positions are tracked while concurrently suppressing the flexible vibration. Simultaneously, uncertainties associated with system dynamics and unknown time delays are taken into account while designing controllers for RFCRSs. It is demonstrated that the fault-tolerant RAQILOFC technique would converge to and remain inside a predefined small compact set after a finite number of cycles. Additionally, it is shown that the system signal sequences are bounded in presence of unknown time delays and hysteresis quantization. Finally, a numerical example is conducted to illustrate the proposed neural network state observer-based fault-tolerant RAQILOFC strategy’s efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.