Abstract
We present thorough this review the developments in the field, point out their current limitations, and outline its timelines and unique potential. In order to do so we introduce the methods used in each of the advances in the application of deep learning (DL) to coral research that took place between the years: 2016–2018. DL has unique capability of streamlining the description, analysis, and monitoring of coral reefs, saving time, and obtaining higher reliability and accuracy compared with error-prone human performance. Coral reefs are the most diverse and complex of marine ecosystems, undergoing a severe decline worldwide resulting from the adverse synergistic influences of global climate change, ocean acidification, and seawater warming, exacerbated by anthropogenic eutrophication and pollution. DL is an extension of some of the concepts originating from machine learning that join several multilayered neural networks. Machine learning refers to algorithms that automatically detect patterns in data. In the case of corals these data are underwater photographic images. Based on “learned” patterns, such programs can recognize new images. The novelty of DL is in the use of state-of-art computerized image analyses technologies, and its fully automated methodology of dealing with large data sets of images. Automated Image recognition refers to technologies that identify and detect objects or attributes in a digital video or image automatically. Image recognition classifies data into selected categories out of many. We show that Neural Network methods are already reliable in distinguishing corals from other benthos and non-coral organisms. Automated recognition of live coral cover is a powerful indicator of reef response to slow and transient changes in the environment. Improving automated recognition of coral species, DL methods already recognize decline of coral diversity due to natural and anthropogenic stressors. Diversity indicators can document the effectiveness of reef bioremediation initiatives. We explored the current applications of deep learning for corals and benthic image classification by discussing the most recent studies conducted by researchers. We review the developments in the field, point out their current limitations, and outline their timelines and unique potential. We also discussed a few future research directions in the fields of deep learning. Future needs are the age detection of single species, in order to track trends in their population recruitment, decline, and recovery. Fine resolution, at the polyp level, is still to be developed, in order to allow separation of species with similar macroscopic features. That refinement of DL will allow such comparisons and their analyses. We conclude that the usefulness of future, more refined automatic identification will allow reef comparison, and tracking long term changes in species diversity. The hitherto unused addition of intraspecific coral color parameters, will add the inclusion of physiological coral responses to environmental conditions and change thereof. The core aim of this review was to underscore the strength and reliability of the DL approach for documenting coral reef features based on an evaluation of the currently available published uses of this method. We expect that this review will encourage researchers from computer vision and marine societies to collaborate on similar long-term joint ventures.
Highlights
Coral reefs are among the most diverse ecosystems in the world
We explored the current applications of deep learning for corals and benthic image classification by discussing the most recent studies conducted by researchers
The decision as to which technique to use depends, to a large extent, on the nature of the project and its goals. It would be the method of choice when the objective of the project is to solve big data problems in ocean ecosystems generated by remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) and extensive video transects composed of thousands of images
Summary
Coral reefs are among the most diverse ecosystems in the world. Their area comprises less than one percent of the total area of the oceans and seas, they are the home of about 25 percent of all marine species [1], thereby maintaining the high biodiversity of coastal tropical marine ecosystems. Hard corals or Scleractinia are the most important hermatypic (reef-building) organisms [3] that play a key role in forming the framework of coral reefs and in providing food, substrate, and shelter for a wide variety of organisms [4]. Acute damage to these corals results in the collapse of the complex community of organisms that live in close association with them. The potential value of deep learning (DL) recognizable color changes in the same species, adds a further promising venue of the automated inspection of corals
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.