Abstract

We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of spatial periodicity. Our variational state is parametrized in terms of a permutationally invariant part described by the Deep Sets neural-network architecture. The input coordinates to the Deep Sets are periodically transformed such that they are suitable to directly describe periodic bosonic systems. We show example applications to both one- and two-dimensional interacting quantum gases with Gaussian interactions, as well as to $^{4}\mathrm{He}$ confined in a one-dimensional geometry. For the one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles. In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.