Abstract

Biosensing is emerging as an important element of water quality monitoring. This research demonstrated that microbial fuel cell (MFC)-based biosensing can be integrated with artificial neural networks (ANNs) to identify specific chemicals present in water samples. The non-fermentable substrates, acetate and butyrate, induced peak areas (PA) and peak heights (PH) that were generally larger than those caused by the injection of fermentable substrates, glucose and corn starch. The ANN successfully identified peaks associated with these four chemicals under a variety of experimental conditions and for two MFCs that had different levels of sensitivity. ANNs that employ the hyperbolic tangent sigmoid transfer function performed better than those using non-continuous transfer functions. ANNs should be integrated into water quality monitoring efforts for smart biosensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.