Abstract

A multilayer back propagation learning algorithm was used as an artificial neural network tool to predict the mechanical properties of porous NiTi shape memory alloys fabricated by press/sintering of the mixed powders. Effects of green porosity, sintering time and the ratio of the average Ti to Ni particle sizes on properties of the product were investigated. Hardness and tensile strength of the compacts were determined by hardness Rockwell B method and shear punch test. Three-fourths of 36 pairs of experimental data were used for training the network within the toolbox of the MATLAB software. Porosity, sintering time and particle size ratios were defined as the input variables of the model. Ultimate strength and hardness were the outputs of the model. Results indicated that seven neurons in the hidden layer yielded the minimum normal error. The modelling outcomes confirmed the feasibility of the model and its good correlation with the experimental information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.