Abstract
Software development effort estimation (SDEE) is one of the main tasks in software project management. It is crucial for a project manager to efficiently predict the effort or cost of a software project in a bidding process, since overestimation will lead to bidding loss and underestimation will cause the company to lose money. Several SDEE models exist; machine learning models, especially neural network models, are among the most prominent in the field. In this study, four different neural network models: Multilayer Perceptron, General Regression Neural Network, Radial Basis Function Neural Network, and Cascade Correlation Neural Network are compared with each other based on: (1) predictive accuracy centered on the Mean Absolute Error criterion, (2) whether such a model tends to overestimate or underestimate, and (3) how each model classifies the importance of its inputs. Industrial datasets from the International Software Benchmarking Standards Group (ISBSG) are used to train and validate the four models. The main ISBSG dataset was filtered and then divided into five datasets based on the productivity value of each project. Results show that the four models tend to overestimate in 80percent of the datasets, and the significance of the model inputs varies based on the selected model. Furthermore, the Cascade Correlation Neural Network outperforms the other three models in the majority of the datasets constructed on the Mean Absolute Residual criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.