Abstract

Influenza affects millions of people every year. It causes a considerable amount of medical visits and hospitalisations as well as hundreds of thousands of deaths. Forecasting influenza prevalence with good accuracy can significantly help public health agencies to timely react to seasonal or novel strain epidemics. Although significant progress has been made, influenza forecasting remains a challenging modelling task. In this paper, we propose a methodological framework that improves over the state-of-the-art forecasting accuracy of influenza-like illness (ILI) rates in the United States. We achieve this by using Web search activity time series in conjunction with historical ILI rates as observations for training neural network (NN) architectures. The proposed models incorporate Bayesian layers to produce associated uncertainty intervals to their forecast estimates, positioning themselves as legitimate complementary solutions to more conventional approaches. The best performing NN, referred to as the iterative recurrent neural network (IRNN) architecture, reduces mean absolute error by 10.3% and improves skill by 17.1% on average in nowcasting and forecasting tasks across 4 consecutive flu seasons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.