Abstract

An artificial neural network (ANN) model of three-layers was advanced to predict the efficiency of the sulfur dioxide (SO2) removal from the flue gas stream (SO2+air) in a fixed bed reactor using granulated activated carbon sorbent. The experimental data were collected from varying six process variables, namely, initial SO2 concentration, reaction temperature, flue gas flow rate, sorbent particle size, bed height and reaction time. The data were used to create input-base information to train and test the NN strategy.  Back propagation algorithm with two hidden layers was used for training and tests the NN. The neural network predictions of SO2 removal efficiency agree with experimental data with the minimum mean squared error (MSE) for training and testing with values of 0.112*10-4 and 0.817*10-3, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.