Abstract

Performance prediction of a commercial proton exchange membrane (PEM) fuel cell system by using artificial neural networks (ANNs) is investigated. Two artificial neural networks including the back-propagation (BP) and radial basis function (RBF) networks are constructed, tested and compared. Experimental data as well as preprocess data are utilized to determine the accuracy and speed of several prediction algorithms. The performance of the BP network is investigated by varying error goals, number of neurons, number of layers and training algorithms. The prediction performance of RBF network is also presented. The simulation results have shown that both the BP and RBF networks can successfully predict the stack voltage and current of a commercial PEM fuel cell system. Speed and accuracy of the prediction algorithms are quite satisfactory for the real-time control of this particular application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.