Abstract
Batch reactive distillation is an integrated unit of batch reactor and distillation. It provides benefits of having higher conversion and yield by continuous removal of side product. The aim of this paper is to develop an artificial neural network (ANN) based model for production of isopropyl myristate in an industrial scaled semibatch reactive distillation. Two cases of the MIMO model were developed. Case 1 does not consider historical data as inputs while case 2 does. The trained ANN for both cases was validated with independent validation data and the best architecture was optimized. Case 1 resulted to 8 inputs, 14 hidden nodes and 2 outputs [8-14-2] ANN while Case 2 resulted to [12-13-2] ANN. The results show that both ANN models have ability to predict the unknown validation and testing data very well. However, the [8-14-2] ANN model produce higher accuracy than [12-13-2] ANN model with MSE of 0.00094 and 0.0013, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.