Abstract
Abstract Stainless steel is known for its superior corrosion resistance in industrial applications. In this work, corrosion modeling of stainless steel 316L is presented using artificial neural networks. The experimental setup consists of a loop containing stainless steel elbow with simulated seawater of known concentration continuously flowing at a specific flow rate, thus allowing to study the effect of flow dynamics and salt concentration on corrosion. Electric field mapping setup is used to collect the voltage and current information along with the temperature of the elbow section. In addition to modeling, characteristics of the observed scale deposits are also studied in-depth and briefly reported in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.