Abstract

Recently, the development of neural network method for solving differential equations has made a remarkable progress for solving fractional differential equations. In this paper, a neural network method is employed to solve time-fractional telegraph equation. The loss function containing initial/boundary conditions with adjustable parameters (weights and biases) is constructed. Also, in this paper, a time-fractional telegraph equation was formulated as an optimization problem. Numerical examples with known analytic solutions including numerical results, their graphs, weights, and biases were also discussed to confirm the accuracy of the method used. Also, the graphical and tabular results were analyzed thoroughly. The mean square errors for different choices of neurons and epochs have been presented in tables along with graphical presentations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.