Abstract

Neural Network Learning and Expert Systems is the first book to present a unified and in-depth development of neural network learning algorithms and neural network expert systems. Especially suitable for students and researchers in computer science, engineering, and psychology, this text and reference provides a systematic development of neural network learning algorithms from a computational perspective, coupled with an extensive exploration of neural network expert systems which shows how the power of neural network learning can be harnessed to generate expert systems automatically. Features include a comprehensive treatment of the standard learning algorithms (with many proofs), along with much original research on algorithms and expert systems. Additional chapters explore constructive algorithms, introduce computational learning theory, and focus on expert system applications to noisy and redundant problems. For students there is a large collection of exercises, as well as a series of programming projects that lead to an extensive neural network software package. All of the neural network models examined can be implemented using standard programming languages on a microcomputer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.