Abstract
Many interventional surgical procedures rely on medical imaging to visualize and track instruments. Such imaging methods not only need to be real time capable but also provide accurate and robust positional information. In ultrasound (US) applications, typically, only 2-D data from a linear array are available, and as such, obtaining accurate positional estimation in three dimensions is nontrivial. In this work, we first train a neural network, using realistic synthetic training data, to estimate the out-of-plane offset of an object with the associated axial aberration in the reconstructed US image. The obtained estimate is then combined with a Kalman filtering approach that utilizes positioning estimates obtained in previous time frames to improve localization robustness and reduce the impact of measurement noise. The accuracy of the proposed method is evaluated using simulations, and its practical applicability is demonstrated on experimental data obtained using a novel optical US imaging setup. Accurate and robust positional information is provided in real time. Axial and lateral coordinates for out-of-plane objects are estimated with a mean error of 0.1 mm for simulated data and a mean error of 0.2 mm for experimental data. The 3-D localization is most accurate for elevational distances larger than 1 mm, with a maximum distance of 6 mm considered for a 25-mm aperture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.