Abstract

We present a practical procedure to obtain reliable and unbiased neural network based force fields for solids. Training and test sets are efficiently generated from global structural prediction runs, at the same time assuring the structural variety and importance of sampling the relevant regions of phase space. The neural networks are trained to yield not only good formation energies, but also accurate forces and stresses, which are the quantities of interest for molecular dynamics simulations. Finally, we construct, as an example, several force fields for both semiconducting and metallic elements, and prove their accuracy for a variety of structural and dynamical properties. These are then used to study the melting of bulk copper and gold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.