Abstract
Feed-forward neural networks are a novel class of variational wave functions for correlated many-body quantum systems. Here, we propose a specific neural network ansatz suitable for systems with real-valued wave functions. Its characteristic is to encode the all-important rugged sign structure of a quantum wave function in a convolutional neural network with discrete output. Its training is achieved through an evolutionary algorithm. We test our variational ansatz and training strategy on two spin-1/2 Heisenberg models, one on the two-dimensional square lattice and one on the three-dimensional pyrochlore lattice. In the former, our ansatz converges with high accuracy to the analytically known sign structures of ordered phases. In the latter, where such sign structures are a priory unknown, we obtain better variational energies than with other neural network states. Our results demonstrate the utility of discrete neural networks to solve quantum many-body problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.