Abstract

The broad acceptance of sustainable and renewable energy sources as a means of integrating them into electrical power networks is essential to promote sustainable development. Microgrids using direct currents (DCs) are becoming more and more popular because of their great energy efficiency and straightforward design. In this work, we discuss the control of a PV-based renewable energy system and a battery- and supercapacitor-based energy storage system in a DC microgrid. We describe a hierarchical control approach based on sliding-mode controllers and the Lyapunov stability theory. To balance the load and generation, a fuzzy logic-based energy management system has been created. Using a neural network, maximum power defects for the PV system were determined. The global asymptotic stability of the framework has been verified using Lyapunov stability analysis. In order to simulate the proposed DC microgrid and controllers, MATLAB/SimulinkR (2019a) was utilized. The outcomes show that the system operates effectively with changing production and consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.