Abstract

The projection of fringes plays an essential role in many applications, such as fringe projection profilometry and structured illumination microscopy. However, these capabilities are significantly constrained in environments affected by optical scattering. Although recent developments in wavefront shaping have effectively generated high-fidelity focal points and relatively simple structured images amidst scattering, the ability to project fringes that cover half of the projection area has not yet been achieved. To address this limitation, this study presents a fringe projector enabled by a neural network, capable of projecting fringes with variable periodicities and orientation angles through scattering media. We tested this projector on two types of scattering media: ground glass diffusers and multimode fibers. For these scattering media, the average Pearson’s correlation coefficients between the projected fringes and their designed configurations are 86.9% and 79.7%, respectively. These results demonstrate the effectiveness of the proposed neural network enabled fringe projector. This advancement is expected to broaden the scope of fringe-based imaging techniques, making it feasible to employ them in conditions previously hindered by scattering effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.