Abstract
In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system (WECS) employing a permanent magnet synchronous generator, is proposed. The permanent magnet generator (PMG) supplies a DC load via a bridge rectifier and two buck–boost converters. Adjusting the switching frequency of the first buck–boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck–boost converter allows output voltage regulation. The on-times of the switching devices of the two converters are supplied by the developed neural network (NN). The effect of sudden changes in wind speed, and/or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simultaneously with the developed NN controller. The results proved also the fast response and robustness of the proposed control system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.