Abstract

An adaptive control-based neural network for a ${n}$ -link robot is studied and the considered robot can be transformed as a class of multi-input–multioutput systems. The position of the robot or the output of the transformed systems is constrained in a time-varying compact set. It is commonly known that the constant constraint belongs to a special case of the time-varying constraint, and thus, it can be more general for handling practical problem as compared with the existing methods for robot. The neural approximation is used to estimate the unknown functions of systems and the time-varying barrier Lyapunov function is used to overcome the violation of constraints. It can prove the stability of the closed-loop systems by using Lyapunov analysis. The feasibility of the approach is demonstrated by performing a simulation example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.