Abstract

In order to stabilize a class of uncertain nonlinear strict-feedback systems with full-state constraints, an adaptive neural network control method is investigated in this paper. The state constraints are frequently emerged in the real-life plants and how to avoid the violation of state constraints is an important task. By introducing a barrier Lyapunov function (BLF) to every step in a backstepping procedure, a novel adaptive backstepping design is well developed to ensure that the full-state constraints are not violated. At the same time, one remarkable feature is that the minimal learning parameters are employed in BLF backstepping design. By making use of Lyapunov analysis, we can prove that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded and the output is well driven to follow the desired output. Finally, a simulation is given to verify the effectiveness of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.