Abstract

This article offers a neural network method for automatic classification of Inverse Synthetic Aperture Radar objects represented in images with high level of post-receive optimization. A full explanation of the procedures of two-layer neural network architecture creating and training is described. The classification in the recognition stage is proposed, based on several main classes or sets of flying objects. The classification sets are designed according to distinctive specifications in the structural models of the aircrafts. The neural network is experimentally simulated in MATLAB environment. Numerical results of the experiments carried, prove the correct classification of the objects in ISAR optimized images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.