Abstract

A method for tracking control of mechanical systems based on artificial neural networks is presented. The controller consists of a proportional plus derivative controller and a two-layer feedforward neural network. It is shown that the tracking error of the closed-loop system goes to zero while the control effort is minimized. Tuning of the neural network’s weights is formulated in terms of a constrained optimization problem. The resulting algorithm has a simple structure and requires a very modest computation effort. In addition, the neural network’s learning procedure is implemented on-line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.