Abstract
Traditional methods of settlement prediction of shallow foundations on granular soils are far from accurate and consistent. This can be attributed to the fact that the problem of estimating the settlement of shallow foundations on granular soils is very complex and not yet entirely understood. Recently, artificial neural networks (ANNs) have been shown to outperform the most commonly used traditional methods for predicting the settlement of shallow foundations on granular soils. However, despite the relative advantage of the ANN based approach, it does not take into account the uncertainty that may affect the magnitude of the predicted settlement. Artificial neural networks, like more traditional methods of settlement prediction, are based on deterministic approaches that ignore this uncertainty and thus provide single values of settlement with no indication of the level of risk associated with these values. An alternative stochastic approach is essential to provide more rational estimation of settlement. In this paper, the likely distribution of predicted settlements, given the uncertainties associated with settlement prediction, is obtained by combining Monte Carlo simulation with a deterministic ANN model. A set of stochastic design charts, which incorporate the uncertainty associated with the ANN method, is developed. The charts are considered to be useful in the sense that they enable the designer to make informed decisions regarding the level of risk associated with predicted settlements and consequently provide a more realistic indication of what the actual settlement might be.Key words: settlement prediction, shallow foundations, neural networks, Monte Carlo, stochastic simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.