Abstract

This work presents a novel framework based on feed-forward neural network for text-independent speaker classification and verification, two related systems of speaker recognition. With optimized features and model training, it achieves 100% classification rate in classification and less than 6% Equal Error Rate (ERR), using merely about 1 second and 5 seconds of data respectively. Features with stricter Voice Active Detection (VAD) than the regular one for speech recognition ensure extracting stronger voiced portion for speaker recognition, speaker-level mean and variance normalization helps to eliminate the discrepancy between samples from the same speaker. Both are proven to improve the system performance. In building the neural network speaker classifier, the network structure parameters are optimized with grid search and dynamically reduced regularization parameters are used to avoid training terminated in local minimum. It enables the training goes further with lower cost. In speaker verification, performance is improved with prediction score normalization, which rewards the speaker identity indices with distinct peaks and penalizes the weak ones with high scores but more competitors, and speaker-specific thresholding, which significantly reduces ERR in the ROC curve. TIMIT corpus with 8K sampling rate is used here. First 200 male speakers are used to train and test the classification performance. The testing files of them are used as in-domain registered speakers, while data from the remaining 126 male speakers are used as out-of-domain speakers, i.e. imposters in speaker verification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.