Abstract

In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and the estimator are connected via a communication network of limited bandwidth. With the purpose of relieving the communication burden and enhancing the transmission security, a new encoding-decoding mechanism is put forward so as to encode the transmitted data with a finite number of bits. The aim of the addressed problem is to develop a neural-network (NN)-based set-membership estimator for jointly estimating the system states and the faults, where the estimation errors are guaranteed to reside within an optimized ellipsoidal set. With the aid of the mathematical induction technique and certain convex optimization approaches, sufficient conditions are derived for the existence of the desired set-membership estimator, and the estimator gains and the NN tuning scalars are then presented in terms of the solutions to a set of optimization problems subject to ellipsoidal constraints. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed estimator design method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.