Abstract
The lateral motion of an Automated Vehicle (AV) is highly affected by the model’s uncertainties and unknown external disturbances during its navigation in adverse environmental conditions. Among the variety of controllers, the sliding mode controller (SMC), known for its robustness towards disturbances, is considered to generate a robust control signal under uncertainties. However, conventional SMC suffers from the issue of high frequency oscillations, called chattering. To address the issue of chattering and reduce the effect of unknown external disturbances in the absence of precise model information, a radial basis function neural network (RBFNN) is employed to estimate the equivalent control. Further, a higher order sliding mode (HOSM) based switching control is proposed in this paper to compensate for the effect of external disturbances. The effectiveness of the proposed controller in terms of lane-keeping and lateral stability is demonstrated through simulation in a high-fidelity Carsim-Matlab Simulink environment under a variety of road and environmental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.