Abstract

In this study, a robust adaptive control (RAC) system is developed for a class of nonlinear systems. The RAC system is comprised of a computation controller and a robust compensator. The computation controller containing a radial basis function (RBF) neural network is the principal controller, and the robust compensator can provide the smooth and chattering-free stability compensation. The RBF neural network is used to approximate the system dynamics, and the adaptive laws are derived to on-line tune the parameters of the neural network so as to achieve favorable estimation performance. From the Lyapunov stability analysis, it is shown that all signals in the closed-loop RBAC system are uniformly ultimately bounded. To investigate the effectiveness of the RAC system, the design methodology is applied to control two nonlinear systems: a wing rock motion system and a Chua’s chaotic circuit system. Simulation results demonstrate that the proposed RAC system can achieve favorable tracking performance with unknown of the system dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call