Abstract

SummaryThis paper proposes an adaptive formation reconfiguration control scheme based on the leader‐follower strategy for multiple spacecraft systems. By taking the predesigned desired velocities and the trajectories as reference signals, a set of coordination tracking controllers is constructed by combining the reconstructed dynamic system and the neural network–based reconfiguration algorithm together. To avoid collisions between spacecraft and obstacles during the formation configuration process, the null space–based behavioral control is integrated into the control design. Since the spacecraft dynamics contains unknown nonlinearity and disturbance, it is challenging to make the system robust to uncertainties and improve the control precision simultaneously. To solve this problem, both the adaptive neural network strategy and the finite‐time control theory are employed. Finally, 2 simulation examples are carried out to verify the proposed algorithm, showing that the formation reconfiguration task can be executed successfully while achieving high control precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.