Abstract

In this paper, an optimal tracking control scheme is proposed for a class of unknown discrete-time nonlinear systems using iterative adaptive dynamic programming (ADP) algorithm. First, in order to obtain the dynamics of the system, an identifier is constructed by a three-layer feedforward neural network (NN). Second, a feedforward neuro-controller is designed to get the desired control input of the system. Third, via system transformation, the original tracking problem is transformed into a regulation problem with respect to the state tracking error. Then, the iterative ADP algorithm based on heuristic dynamic programming is introduced to deal with the regulation problem with convergence analysis. In this scheme, feedforward NNs are used as parametric structures for facilitating the implementation of the iterative algorithm. Finally, simulation results are also presented to demonstrate the effectiveness of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.