Abstract

A neural-learning fuzzy technique is proposed for T–S fuzzy-model identification of model-free physical systems. Further, an algorithm with a defined modelling index is proposed to integrate and to guarantee that the proposed neural-based optimal fuzzy controller can stabilize physical systems; the modelling index is defined to denote the modelling-error evolution, and to ensure that the training data for neural learning can describe the physical system behavior very well; the algorithm, which integrates the neural-based fuzzy modelling and optimal fuzzy controlling process, can implement off-line modelling and on-line optimal control for model-free physical systems. The neural-fuzzy inference network is a self-organizing inference system to learn fuzzy membership functions and fuzzy-subsystems’ parameters as data feeding in. Based on the generated T–S fuzzy models for the continuous mass–spring–damper system and Chua's chaotic circuit, discrete-time model car system and articulated vehicle, their corresponding fuzzy controllers are formulated from both local-concept and global-concept fuzzy approach, respectively. The simulation results demonstrate the performance of the proposed neural-based fuzzy modelling technique and of the integrated algorithm of neural-based optimal fuzzy control structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call