Abstract

In this paper, a neural network based optimal adaptive attitude control scheme is derived for the near-space vehicle with uncertainties and external time-varying disturbances. Firstly, radial basis function neural network (RBFNN) approximation method and nonlinear disturbance observer (NDO) are used to tackle the system uncertainties and external disturbances, respectively. Subsequently, a feedforward control input under backstepping control frame with RBFNN and NDO is designed to transform the optimal tracking control problem into an optimal stabilization problem. Then, a single online approximation based adaptive method is used to learn the Hamilton–Jacobi–Bellman equation to obtain the corresponding optimal controller. As a result, the compound controller consists of feedforward control input and optimal controller which can ensure that the near-space vehicle attitude angles are able to track reference signals in an optimal way. Lyapunov stability analysis method is used to show that all the closed-loop system signals are uniformly ultimately bounded. Finally, simulation results show the effectiveness of the proposed optimal attitude control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.