Abstract
A nonlinear model predictive control method based on fuzzy-Sequential Quadratic Programming (SQP) for direct thrust control is proposed in this paper for the sake of improving the accuracy of thrust control. The designed control system includes four parts, namely a predictive model, rolling optimization, online correction, and feedback correction. Considering the strong nonlinearity of engine, a predictive model is established by Back Propagation (BP) neural network for the entire flight envelope, whose input and output are determined with random forest algorithm and actual situation analysis. Rolling optimization typically uses SQP as the optimization algorithm, but SQP algorithm is easy to trap into local optimization. Therefore, the fuzzy-SQP algorithm is proposed to prevent this disadvantage using fuzzy algorithm to determine the initial value of SQP. In addition to the traditional three parts of model predictive control, an online correction module is added to improve the predictive accuracy of the predictive model in the predictive time domain. Simulation results show that the BP predictive model can reach a certain degree of predictive accuracy, and the proposed control system can achieve good tracking performance with the limited parameters within the safe range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.