Abstract
This paper proposes a neural network-based (NN-based) data-driven iterative learning control (ILC) algorithm for the tracking problem of nonlinear single-input single-output (SISO) discrete-time systems with unknown models and repetitive tasks. The control objective is to make the output of the system track the reference trajectory in each iteration process. Therefore, at each relative time during every iteration process, a generalized regression neural network (GRNN) is used as the estimator to solve the key parameters of the system, and a radial basis function neural network (RBFNN) is used as the controller to solve the control input. Compared with the traditional ILC algorithm, the two complex solving processes, i.e., dynamic linearization and criterion function minimization, are replaced and simplified into the iterative training of GRNNs and RBFNNs. The proposed algorithm is out-of-the-box and uses a point-to-point method to calculate the control input for each relative time of the system iteration, driving the tracking error of the system to approach zero. In addition, it is proved that the tracking error of the system under the proposed control algorithm is uniformly ultimately bounded. Finally, a numerical example shows the effectiveness and superiority of the control algorithm, and a path tracking experiment of an unmanned vehicle further verifies its practicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.