Abstract
Adaptive dynamic programming (ADP), which belongs to the field of computational intelligence, is a powerful tool to address optimal control problems. To overcome the bottleneck of solving Hamilton–Jacobi–Bellman equations, several state-of-the-art ADP approaches are reviewed in this paper. First, two model-based offline iterative ADP methods including policy iteration (PI) and value iteration (VI) are given, and their respective advantages and shortcomings are discussed in detail. Second, the multistep heuristic dynamic programming (HDP) method is introduced, which avoids the requirement of initial admissible control and achieves fast convergence. This method successfully utilizes the advantages of PI and VI and overcomes their drawbacks at the same time. Finally, the discrete-time optimal control strategy is tested on a power system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.