Abstract
This paper deals with a neural-network (NN)-based integrated electronic load controller (IELC) for an isolated asynchronous generator (IAG) driven by a constant-power small hydro uncontrolled turbine feeding three-phase four-wire loads. The proposed IELC utilizes an NN based on the least mean-square algorithm known as adaptive linear element to extract the fundamental component of load currents to control the voltage and the frequency of an IAG with load balancing in an integrated manner. The IELC is realized using zigzag/three single-phase transformers and a six-leg insulated-gate bipolar-transistor-based current-controlled voltage-source converter, a chopper switch, and an auxiliary load on its dc bus. The proposed IELC, with the generating system, is modeled and simulated in MATLAB environment using Simulink and Simpower System toolboxes. The simulated results are validated with test results on a developed prototype to demonstrate the effectiveness of IELC for the control of an IAG feeding three-phase four-wire linear/nonlinear balanced/unbalanced loads with neutral-current compensation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.