Abstract
This study reports a fixed-time tracking control problem for strict-feedback nonlinear systems with quantized inputs and actuator faults where the total number of faults is allowed to be infinite. By taking advantage of radial basis function neural networks (RBFNNs), unknown nonlinear function terms in the system dynamic model can be effectively approached. In addition, based on the sector property of quantization nonlinearities and the structure of the actuator fault model, novel adaptive estimations and innovative auxiliary design signals are constructed to compensate for the influence caused by actuator faults and quantized inputs properly in the fixed-time convergence settings. Then, rigorous theoretical analysis manifests that the proposed control scheme can make the output tracking error converge to a small neighborhood of the origin within a fixed time, and the upper bound of the setting time not only does not depend on initial states of the system but also can be preassigned by selecting parameters appropriately. Meanwhile, all the signals in the closed-loop system remain bounded. Finally, a numerical example and a practical example of a single-link manipulator are presented to demonstrate the effectiveness of the proposed control algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.