Abstract

Cell-based therapies are bound to revolutionize medicine, but significant technical hurdles must be overcome before wider adoption. In particular, nondestructive, label-free methods to characterize cells in real time are needed to optimize the production process and improve quality control. Raman spectroscopy, which provides a fingerprint of a cell's chemical composition, would be an ideal modality but is too slow for high-throughput applications. Compressive Raman techniques, which measure only linear combinations of Raman intensities, can be fast but require careful optimization to deliver high performance. Here, we develop a neural network model to identify optimal parameters for a compressive sensing scheme that reduces measurement time by 2 orders of magnitude. In a data set containing Raman spectra of three different cell types, it achieves up to 90% classification accuracy using only five linear combinations of Raman intensities. Our method thus unlocks the power of Raman spectroscopy for the characterization of cell products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call