Abstract
The present paper deals with the development of neural network (NN)-based expert system for modeling of 2024 aluminum tube spinning process. Tube spinning is a highly nonlinear thermo-mechanical process for producing large-diameter thin-walled shapes. It is interesting to note that the performance of the process depends on various process parameters, such as wall thickness, percentage of thickness reduction, feed rate, mandrel rotational speed, solution treatment time and aging time. Therefore, an NN-based expert system is necessary for modeling the tube spinning process. The input layer of NN consists of six neurons corresponding to the inputs of the tube spinning process. Moreover, the output layer consists of four neurons that represent four responses, namely change in diameter, change in thickness, inner and outer surface roughness. It is to be noted that the performance of NN depends on various factors, such as number of neurons in the hidden layer, coefficients of transfer functions and connecting weights, etc. In the present paper, three algorithms, such as back-propagation, genetic and artificial bee colony algorithms, are used for optimizing the said variables of NN. Further, the developed approaches are tested for their accuracy in prediction with the help of some test cases and found to model the tube spinning process effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.