Abstract

A novel filter is proposed by applying back propagation neural network (BPNN) ensemble where the noisy signal and the reference one are the same in a learning process. This neural network (NN) ensemble filter not only well reduces additive and multiplicative white noise inside signals, but also preserves signals' characteristics. It is proved that the reduction of noise using NN ensemble filter is better than the improved epsilon nonlinear filter and single NN filter while signal to noise ratio is smaller. The performance of the NN ensemble filter is demonstrated in computer simulations and actual electroencephalogram (EEG) signals processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.