Abstract

This paper proposes an advanced diagonal decoupling control method for powered wheelchair systems. This control method is based on a combination of the systematic diagonalization technique and the neural network control design. As such, this control method reduces coupling effects on a multivariable system, leading to independent control design procedures. Using an obtained dynamic model, the problem of the plant's Jacobian calculation is eliminated in a neural network control design. The effectiveness of the proposed control method is verified in a real-time implementation on a powered wheelchair system. The obtained results confirm that robustness and desired performance of the overall system are guaranteed, even under parameter uncertainty effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call