Abstract
In this paper, we establish a neural-network-based decentralized control law to stabilize a class of continuous-time nonlinear interconnected large-scale systems using an online model-free integral policy iteration (PI) algorithm. The model-free PI approach can solve the decentralized control problem for the interconnected system which has unknown dynamics. The stabilizing decentralized control law is derived based on the optimal control policies of the isolated subsystems. The online model-free integral PI algorithm is developed to solve the optimal control problems for the isolated subsystems with unknown system dynamics. We use the actor-critic technique based on the neural network and the least squares implementation method to obtain the optimal control policies. Two simulation examples are given to verify the applicability of the decentralized control law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.