Abstract

In this paper, a novel iterative two-stage dual heuristic programming (DHP) is proposed to solve the optimal control problems for a class of discrete-time switched nonlinear systems subject to actuators saturation. First, a novel nonquadratic performance functional is introduced to confront control constraints of the saturating actuator. Then, the iterative two-stage DHP algorithm is developed to solve the Hamilton-Jacobi-Bellman (HJB) equation of the switched system with the saturating actuator. Moreover, the convergence and optimality of the two-stage DHP algorithm are strictly proven. To implement this algorithm efficiently, there are two neural networks used as parametric structure to approximate the costate function and the corresponding control law, respectively. Finally, simulation results are given to verify the effectiveness of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.