Abstract

In this paper, the problems of robust consensus tracking control for the second-order multi-agent system with uncertain model parameters and nonlinear disturbances are considered. An adaptive control strategy is proposed to smooth the agent’s trajectory, and the neural network is constructed to estimate the system’s unknown components. The consensus conditions are demonstrated for tracking a leader with nonlinear dynamics under an adaptive control algorithm in the absence of model uncertainties. Then, the results are extended to the system with unknown time-varying disturbances by applying the neural network estimation to compensating for the uncertain parts of the agents’ models. Update laws are designed based on the Lyapunov function terms to ensure the effectiveness of robust control. Finally, the theoretical results are verified by numerical simulations, and a comparative experiment is conducted, showing that the trajectories generated by the proposed method exhibit less oscillation and converge faster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call