Abstract

This paper addresses the adaptive optimal containment control issue for non-affine nonlinear multi-agent systems in the presence of periodic disturbances. To deal with the disturbed internal dynamics, a fourier series expansion-neural networks-based adaptive identifier is designed for each follower, such that the restrictions posed on the system dynamics are released. Then,an adaptive dynamic programming technique is adopted to acquire the optimized virtual and actual controllers under a simplified actor-critic architecture, where the critic aims to appraise control performance and the actor aims to perform control task. Note that the above updating laws are constructed by the negative gradient of a designed function, which is constructed on the basis of the partial derivative of Hamilton-Jacobi-Bellman equation. Finally, simulation results are provided to show the applicability and effectiveness of the containment control scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.