Abstract
Accurate environmental sensing is an important prerequisite for autonomous driving in off-road environments. Most targets in off-road environments do not have regular shapes, colors, textures and other features, making them difficult to identify. In addition, complex driving conditions can cause large, broadband vibrations in off-road vehicles, which interfere with environment sensing and affect the accuracy and efficiency of perception. To address the above problems, this paper proposes an improved 3D point cloud filtering algorithm for unstructured environments and a point cloud classification method using neural networks, and provides an experimental proof-of-principle of the proposed methods. A comparison of the results under six conditions shows that the amount of data processed by the improved filtering algorithm is 65%–85% of that processed by the conventional filtering algorithm, and the trained neural network model achieves an accuracy of 98.0% and a loss value as low as 0.008 when classifying three typical targets in an unstructured environment. A comparison with algorithms proposed in other papers shows that the proposed method is highly feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.