Abstract

Inspired by our previous work on a quadratic approximation manifold [1], we propose in this paper a computationally tractable approach for combining a projection-based reduced-order model (PROM) and an artificial neural network (ANN) to mitigate the Kolmogorov barrier to reducibility of parametric and/or highly nonlinear, high-dimensional, physics-based models. The main objective of our PROM-ANN concept is to reduce the dimensionality of the online approximation of the solution beyond what is achievable using affine and quadratic approximation manifolds, while maintaining accuracy. In contrast to previous approaches that exploited one form or another of an ANN, the training of the ANN part of our PROM-ANN does not involve data whose dimension scales with that of the high-dimensional model; and the resulting PROM-ANN can be efficiently hyperreduced using any well-established hyperreduction method. Hence, unlike many other ANN-based model order reduction approaches, the PROM-ANN concept we propose in this paper should be practical for large-scale and industry-relevant computational problems. We demonstrate the computational tractability of its offline stage and the superior wall clock time performance of its online stage for a large-scale, parametric, two-dimensional, model problem that is representative of shock-dominated unsteady flow problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call