Abstract

In obstacle avoidance by a legged mobile robot, it is not necessary to avoid all of the obstacles by turning only, because it can climb or stride over some of them, depending on the obstacle configuration and the state of the robot, unlike a wheel-type or a crawler-type robot. It is thought that mobility efficiency to a destination is improved by crawling over or striding over obstacles. Moreover, if robots have many legs, like 4-legged or 6-legged types, then the robot's movement range is affected by the order of the swing leg. In this article a neural network (NN) is used to determine the action of a quadruped robot in an obstacle-avoiding situation by using information about the destination, the obstacle configuration, and the robot's self-state. To acquire a free gait in static walking, the order of the swing leg is realized using an alternative NN whose inputs are the amount of movement and the robot's self-state. The design parameters of the former NN are adjusted by a genetic algorithm (GA) off-line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.